Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets

نویسنده

  • D. SUN
چکیده

We present a generalized Newton method and a quasiNewton method for solving H(x) := F(nc(x))+x-nc(x) = 0, when C is a polyhedral set. For both the Newton and quasi-Newton methods considered here, the subproblem to be solved is a linear system of equations per iteration. The other characteristics of the quasi-Newton method include: (i) a g-superlinear convergence theorem is established without assuming the existence of H' at a solution x* of H(x) = 0; (ii) only one approximate matrix is needed; (iii) the linear independence condition is not assumed; (iv) Q-superlinear convergence is established on the original variable x; and (v) from the QR-factorization of the kth iterative matrix, we need at most O((1 +2\Lk\ +2\Lk\)n2) arithmetic operations to get the QR-factorization of the (k+ l)th iterative matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization

We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion

The smoothness-constrained least-squares method is widely used for two-dimensional (2D) and three-dimensional (3D) inversion of apparent resistivity data sets. The Gauss–Newton method that recalculates the Jacobian matrix of partial derivatives for all iterations is commonly used to solve the least-squares equation. The quasi-Newton method has also been used to reduce the computer time. In this...

متن کامل

A Polyhedral Method to Compute All Affine Solution Sets of Sparse Polynomial Systems

To compute solutions of sparse polynomial systems efficiently we have to exploit the structure of their Newton polytopes. While the application of polyhedral methods naturally excludes solutions with zero components, an irreducible decomposition of a variety is typically understood in affine space, including also those components with zero coordinates. We present a polyhedral method to compute ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003